Categories: Power BI
Tags:

๐ŸŽฏ Target Field (Label for Classification/Fraud Detection)

  • Column: FraudFound_P
  • Type: Binary (0 = Not Fraud, 1 = Fraud)
  • This is your target field, used to identify whether a claim is fraudulent.

Dataset Link : https://www.kaggle.com/datasets/shivamb/vehicle-claim-fraud-detection


๐Ÿ“Š Power BI Dashboard Ideas

1. Fraud Overview

  • KPI Cards
    • Total Claims
    • Total Fraudulent Claims
    • Fraud Rate (%)
  • Pie/Donut Chart
    • Fraudulent vs Non-Fraudulent Claims distribution

2. Demographics of Fraud

  • Stacked Column/Bar Chart
    • Fraud by Sex, MaritalStatus, or AgeOfPolicyHolder
  • Slicers for Age, Sex, Marital Status

3. Vehicle & Policy Analysis

  • Heatmap or Clustered Bar Chart
    • Fraud by Make vs VehicleCategory
  • Table
    • Top vehicle makes with highest fraud rate
  • Bar Chart
    • Fraud by VehiclePrice, AgeOfVehicle, or PolicyType

4. Geographic Insight

  • Map Visualization (if there were geographic data โ€” but seems it’s missing)
  • Otherwise:
    • Compare AccidentArea (Urban vs Rural) vs Fraud Rate

5. Agent & Claim Behavior

  • Bar Chart
    • Fraud by AgentType (Internal vs External)
    • WitnessPresent vs Fraud Cases
    • PoliceReportFiled vs Fraud
  • Trend Line or Area Chart
    • Claims per Month vs Fraud Cases (Month and MonthClaimed)

6. Policy Duration & Fraud

  • Bar/Stacked Chart
    • Days_Policy_Accident, Days_Policy_Claim vs Fraud Rate